Current METEL Projects

On going projects:

Development of Medium Speed Engine Testing Laboratories for Efficiency Improvement and Emissions Reduction Technology Evaluation

This project will install medium-speed engine testing capabilities to support basic research and assess benefits new fuel and aftertreatment technologies. The heavy transportation industries are currently experiencing unprecedented rates of change the utilization of energy resources for the movement of primary goods and people. Environmental concerns, volatile energy prices and environmental regulations demand technological advancement and operational efficiency improvements to keep pace. The Maine Maritime Academy’s Marine Engine Testing and Emissions Laboratory (METEL) will install state-of-the-art engine and powertrain testing facilities to address these needs. METEL associated faculty, staff and collaborators will research the operational and combustion performance of alternative fuels and emissions reduction technologies to reduce risk of new technology adoption in the transportation industry. Solutions will be evaluated for their application to various modes of transportation including rail and heavy off-road equipment.

The engine will be installed at Maine Maritime Academy’s Andrew’s laboratory which is a water front facility well suited to accept and operate medium speed engine technologies.  The engine will be load bank configured to conform to ISO 8178 stationary engine protocols to provide engine efficiency, operational and combustion emissions data. The engine will be engineered to utilize light and heavy fuel oils, as well as emulsification and continuous fuel switching capabilities to serve the broadest range of emerging alternative fuel technologies. Exhaust aftertreatment piping system will allow installation of various SOx, NOx and PM aftertreatment technologies.

Hydrogen Injection Project

This project scope is to evaluate Hydrogen Injection into Diesel fuels in marine vessels as an emissions reduction technology. The company Global Marine Consulting (GMC) is developing the hydrogen injection system for use in marine vessel and will supply the hardware to be tested in this effort. Maine Maritime Academy (MMA) will test the hydrogen injection system both in laboratory diesel engines and in MMA work vessels under at-sea conditions. The project will evaluate this technology as an emission reduction and mitigation system for use in heavy marine engines as found in marine, rail and stationary power application such as pipeline pumping stations. Preliminary testing by GMC has showed that hydrogen injected into diesel fuel can significantly reduce NOx and Particulate Matter. The system generates hydrogen using shipboard electrical power typically available on a marine vessel. The project will evaluate both emissions as well as engine performance using the system, including effects on vessel operating costs. The project will evaluate the GMC hydrogen injection system for emissions and vessel performance in the MMA R/V Quickwater, a 41 foot coast Guard fast response vessel, that is specially equipped for high fidelity emissions and performance testing. The vessel has twin Diesel engines allowing side by side comparison testing under at sea conditions. Multiple Fuels can be switched over to each engine in real time for each engine while underway, allowing unbiased comparison between two fuels simultaneously.

Diesel/Glycerin Emulsion Fuel Project

This project scope is to evaluate Diesel/Glycerin emulsion fuels in marine vessels. The company Sea Change Group LLC is developing the diesel/glycerin fuels that will be tested in this effort. Maine Maritime Academy (MMA) will test the fuels both in laboratory diesel engines and in MMA work vessels under at-sea conditions. The project will evaluate the fuel as a drop-in, low emissions, low cost fuel for use in heavy marine engines as found in marine, rail and stationary power application such as pipeline pumping stations. Glycerin is a waste product of the biodiesel industry and has significant fuel content and is very low cost. When emulsified with diesel, testing has shown that significant NOx and particulate matter emissions reductions can be achieved, comparable to the emissions reductions seen using water emulsion fuels. The project will evaluate the Diesel/glycerin emulsion fuels for emissions and vessel performance in the MMA R/V Quickwater, a 41 foot coast Guard fast response vessel, that is specially equipped for high fidelity emissions and performance testing. The vessel has twin Diesel engines allowing side by side comparison testing under at sea conditions. Multiple fuels can be switched over to each engine in real time for each engine while underway, allowing unbiased comparison between two fuels simultaneously.

Development of Advanced Biofuels for Marine Applications (UMaine)

The thrust of this project is to develop biofuel/biodiesel conversion processes using crude biomass as feedstock. University of Maine’s (UMaine’s) Forest Bioproducts Research Institute (FBRI) has currently developed a Thermal DeOxygenation (TDO) process and formate assisted pyrolysis process (FasP) for converting crude biomass to biofuel products. The project will focus on upgrading those laboratory processes to produce viable marine biodiesel derivatives which will be testing in Maine Maritime Academy’s (MMA’s) METEL laboratory test diesel engines. The significant challenge in converting biomass into a transportation fuel is the removal of oxygen which can affect both the stability of the fuel in addition to its compatibility with petroleum derived fuels and infrastructure. The University of Maine has developed two transformative chemical pathways to convert biomass into crude oils that are compatible with petroleum transportation fuels (TDO and FasP). These oils are highly stable and have oxygen contents ranging from 1-10 wt%. Yields from these processes are greater than 50% on an energy basis and show promise as a viable method to efficiently convert crude biomass to marine fuels. UMaine/FBRI will develop and optimize the TDO and FasP processes to produce liter quantities of marine grade biofuel which will then be testing in MMA’s single cylinder diesel engine test stand and evaluated for performance and emissions characteristic as compared to conventional diesel fuel.

Development of Thermoelectric Exhaust Generator (TEG) Heat Recovery Systems for Marine Diesels

Thermoelectric materials are an enabling technology that allows the recapture of this wasted energy from heat sources, such as exhaust and coolant systems, which account for nearly 50% of the total combustion energy. If a fraction of the marine diesel’s wasted energy could be harnessed and stored with high power density batteries, an electric drive system could be utilized to transport ships quietly and cleanly into and out of congested ports and high population centers. Overall, a dramatic reduction of the maritime industry’s carbon footprint could be realized, as a modest 10% increase in engine efficiency translates into a savings of approximately 180,000 barrels of fuel per day on a world-wide basis. Solid state thermoelectric materials, when exposed to a thermal gradient, generate an electric potential according to the Seebeck effect. While the automobile industry has taken a lead in commercializing thermoelectric generators (TEG) as early as 2013, it is the marine industry that may well be the greater beneficiary of this technology. Economies of scale, the ability to generate a higher thermal gradient, and fewer weight and volume constraints, all suggest a promising feasibility for marine applications. The successful development of a hybrid thermoelectric vessel (green ship) at Maine Maritime Academy is an integral part of the Marine Engine Testing and Emissions Laboratory. Maine Maritime Academy, partnered with Thermoelectric Power Systems, LLC, has been conducting research and development in the applications of thermoelectric generators (TEGs) since 2008. The technical rationale behind the inclusion of thermoelectric research is comprised of the following objectives: (1) Provide data on the systems-wide effects of the use of TEGs on plant efficiency and performance (in a marine environment); (2) Identification of optimal marine platforms to utilize TEG energy recovery systems; (3) Identification of optimal thermoelectric materials and TEG designs for classes of marine platforms; (4) To provide the U.S. Department of Transportation with an objective and systems level evaluation of TEGs in marine application.

Marine Engine Continuous Emissions Monitoring System

Marine vessels contribute a significant portion of total pollutant gas and particulate matter emissions near ports and waterways across the United States. As such, current International Convention for the Prevention of Pollution from Ships (MARPOL), United States Federal, and California Air Resources Board emissions regulations dictate engine exhaust emission limits on CO, NOx, Total Hydrocarbons (THC), and Particulate Matter (PM) with SOx controlled via fuel sulfur content limits. These regulations also dictate a tiered schedule of increasingly stringent emissions limits be met in the future. The Marine Engine Testing and Emissions Laboratory (METEL) at Maine Maritime Academy (MMA) was created to assist and address the emission reduction needs of the marine industry due to regulatory requirements. Several emissions reduction projects are underway at METEL with a Continuous Emissions Monitoring System (CEMS) under development to quantify all gas and particulate emission improvements from laboratory testing and on board vessel testing at sea. The unique requirement of continuous emissions monitoring in a harsh marine environment requires rugged equipment on board a vessel capable of withstanding shock, vibration, and corrosion. For convenience, a simple calibration procedure is required with calibration stability over time. Fourier Transform Infrared (FTIR) spectroscopy is utilized in the system as a gas emissions monitoring device. FTIR has the potential to simultaneously quantify all currently regulated emissions and more than 100 of the 189 Hazardous Air Pollutants listed in the Clean Air Act Amendments of 1990 [1]. As such, the versatility of FTIR spectroscopy as a single source gas emissions measurement system will be evaluated as an alternative to meet marine emissions regulations. A Condensation Particle Counter (CPC) is additionally employed as a mature technology to measure exhaust particulate matter total number concentration. Additional strategies will be evaluated for measuring particulate matter total mass and particle size.

Algae based Glycerin Fuel Project

The thrust of this project is demonstrating the feasibility of a marine based bioreactor capable of producing, extracting and purifying glycerol from the microalgae species, Dunaliella tertiolecta. Dunaliella tertiolecta, a saltwater microalgae species, has been shown to dedicate the majority of its fixed carbon dioxide to extracellular glycerol production. The leakage of glycerol across the cell membrane into the growth medium raise the possibility of extracting glycerol while maintaining a healthy algae culture – a major necessity for economical biofuel production from microalgae. Microalgae represent a potentially huge opportunity in offshore renewable energy generation and storage. Microalgae produce energy rich biofuels year round in marginal environments at rates in excess of 10 times that of plants. If microalgae could be cultured and maintained remotely a huge quantity of biofuels could be produced economically without displacing conventional agricultural products. The project studies the production of glycerin from algae with the intention of scaling up this system to farm scale production process which can produce commercial quantities of biofuel in a sustainable and efficient manner. Protocols for growth and production condition, including inexpensive growth media, fixation issues, glycerin monitoring systems and glycerin separation methods are issues being studied in this project.

Sustainability Education and Laboratory Training for Workforce Enhancement at Maine Maritime Academy

This project seeks to strengthen the educational pipeline of skilled transportation leaders through developing modern training laboratories for integrated sustainability education. Next generation transportation leaders will be tasked with identification and implementation of emerging technologies while managing operational impacts on the environmental.  To address this demand, METEL will work with Maine Maritime Academy Faculty to develop a new sustainability curriculum and enable laboratory training capabilities to enhance student awareness of environmental concerns and evaluate new technologies for their operational and societal benefits.

METEL will enhance the educational opportunity to all students on campus through the creation of a Sustainability Minor. New courses to be developed include Introduction to Environmental Sustainability, Pollution Control and Remediation, Air Pollution and Emissions Testing and Control, and Alternative Fuels.  Curriculum development will additionally assess opportunities in continuing education modules that are based on these new courses. Courses will be tailored to transportation and engineering majors, but will be suitable for all majors. The courses will introduce current topics, present relevant scientific information and provide laboratory training for modern technology evaluation and environment al monitoring.

Laboratories housed in the Maine Maritime Academy’s American Bureau of Shipping Center for Engineering, Science and Research will be enhanced by implementing new training equipment to education students for transportation careers. These laboratories include the Materials Science Laboratory, Thermal/Fluid Laboratory, Renewable Energy Laboratory and the Center for Strategic Maintenance and Engineering. This project will develop critical training equipment and procedures to increase student access to modern measurement techniques and technology operations.

Efficiency Improvement of Workboats through Hull Form Optimization

This project will develop novel hull forms to significantly reduce fuel consumption, pollution, and operator impact of workboats. Hull designs will maintain large deck space and trap capacity needed for modern harvest and transportation vessels. The project will focus on hydrodynamic optimization and evaluation testing. The ultimate goal of the research project is to build and test a full scale prototype of an optimized trimaran design.

A 1/8 scale models will enable evaluation of sidehull locations and five stern shapes to be varied as part of a hydrodynamic study. Calm water resistance tests will to compare the potential for power reductions in the 10 to 20 knot speed range.  Larger, 1/5.5 scale, models will also be considered. The project could have significant long-term impacts on the sustainability of the Maine lobster fishing fleet, as well as facilitating reductions in overall emissions from port industries.